Monsters
GP: 82 | W: 44 | L: 34 | OTL: 4 | P: 92
GF: 282 | GA: 296 | PP%: 17.54% | PK%: 80.94%
GM : Eric Leclerc | Morale : 75 | Team Overall : 63
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Monsters
44-34-4, 92pts
3
FINAL
1 Admirals
38-38-6, 82pts
Team Stats
W4StreakL3
18-20-3Home Record23-16-2
26-14-1Away Record15-22-4
6-3-1Last 10 Games7-3-0
3.44Goals Per Game3.59
3.61Goals Against Per Game3.79
17.54%Power Play Percentage24.44%
80.94%Penalty Kill Percentage76.34%
Wolves
41-33-8, 90pts
1
FINAL
6 Monsters
44-34-4, 92pts
Team Stats
L3StreakW4
25-11-5Home Record18-20-3
16-22-3Away Record26-14-1
5-4-1Last 10 Games6-3-1
3.74Goals Per Game3.44
3.62Goals Against Per Game3.61
21.61%Power Play Percentage17.54%
83.06%Penalty Kill Percentage80.94%
Team Leaders
Anthony StolarzWins
Anthony Stolarz
42
Charlie LindgrenSave Percentage
Charlie Lindgren
0.937

Team Stats
Goals For
282
3.44 GFG
Shots For
2940
35.85 Avg
Power Play Percentage
17.5%
47 GF
Offensive Zone Start
39.7%
Goals Against
296
3.61 GAA
Shots Against
3020
36.83 Avg
Penalty Kill Percentage
80.9%
53 GA
Defensive Zone Start
42.0%
Team Info

General ManagerEric Leclerc
CoachJeremy Colliton
DivisionCentral Division
ConferenceWestern Conference
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,962
Season Tickets300


Roster Info

Pro Team24
Farm Team19
Contract Limit43 / 80
Prospects32


Team History

This Season44-34-4 (92PTS)
History119-111-18 (0.480%)
Playoff Appearances1
Playoff Record (W-L)2-4
Stanley Cup0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Liam Foudy (R)0XX100.00643695727880776763616269656263075650231925,000$
2Rasmus Asplund0XXX100.005534957069828468726759636466670756402611,650,000$
3Brendan Lemieux0XX100.008982586680767763566162576268700756402711,688,000$
4Wayne Simmonds0XX100.008385616377737661656257555988760756303524,000,000$
5Alex Steeves (R)0X100.00633784647488846371655860626466075630242950,000$
6Graeme Clarke (R)0X100.00583787646791826366646258636264075620223950,000$
7Turner Elson0X100.00673885607381885966585758627173075620311925,000$
8Xavier Simoneau (R)0X100.00634166646267716370675565636267075610223950,000$
9Patrick Guay (R)0X100.00573974566673625562565753566163075570213950,000$
10Xavier Parent (R)0XX100.00623687566271615553525851576264075570223950,000$
11Pierre-Olivier Joseph0X100.00683580747788866730736157536365075660243995,000$
12Justin Barron (R)0X100.00703891678185816530676362536263075650222950,000$
13Gustav Lindstrom0X100.00653687657886786330725466496567075640253998,900$
14Jordan Spence (R)0X100.00633785666790856430696062516264075640222950,000$
15Brayden Pachal (R)0X100.00774364598182856030645865496466075630243995,000$
16William Lagesson (R)0X100.00714180608279805830655560486769075620271750,000$
Scratches
1Logan Brown0X100.00807591649678766773686063656668075660251995,000$
2Brendan Brisson (R)0XXX100.00593972666884716567646358656264075620223950,000$
3Nathan Legare (R)0X100.00664174557585835458555657536264075590222950,000$
4Jacob Larsson0X100.006740756679788362306358615066680756302621,200,000$
5John Parker-Jones0X100.00904860539963625230515561466365075590233875,000$
TEAM AVERAGE100.0068457963768078625263596057656607562
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Anthony Stolarz100.00837469988281838281838270830757102932,638,000$
2Charlie Lindgren100.0081656076807981807981807084075680301875,000$
Scratches
1Remi Poirier (R)100.0072596082717072717072716267075630223950,000$
TEAM AVERAGE100.007966638578777978777978677807567
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jeremy Colliton75717272585488CAN382900,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Rasmus AsplundMonsters (CBJ)C/LW/RW7333377030042243037522910.89%22154921.2399186519712361517254.07%143900010.9003000431
2Liam FoudyMonsters (CBJ)C/RW7328346215009214342992428.19%36168923.1467136220610192445151.75%62800000.7324000444
3Logan BrownMonsters (CBJ)C691448622219588221246601865.69%24164023.7729113717703382253056.38%232700000.7604001253
4Jordan SpenceMonsters (CBJ)D73144054-1500119127123428311.38%97158221.6761016781931011185400.00%000000.6800000211
5Justin BarronMonsters (CBJ)D72143953125801508514945989.40%117158822.063912741781011163130.00%000000.6700000243
6Alex SteevesMonsters (CBJ)C6718294717100461481344411213.43%1090313.490115320001145155.97%104700001.0400000334
7Brendan BrissonMonsters (CBJ)C/LW/RW67182846-1100351051704513610.59%8108016.12358271150001151255.03%39800000.8511000232
8Graeme ClarkeMonsters (CBJ)RW59212142-12013781904712411.05%996616.3923518880001154448.86%8800010.8711000321
9Brendan LemieuxMonsters (CBJ)LW/RW732219411010410322862016112210.95%14146520.073363320411241224147.93%21700000.5613110324
10Wayne SimmondsMonsters (CBJ)LW/RW7319193827210300851814410910.50%9132418.146713351911011363351.35%11100100.5702002332
11Brayden PachalMonsters (CBJ)D69627331089151576246174313.04%81100914.6411211400110109000.00%000000.6500003220
12Jacob LarssonMonsters (CBJ)D726263210200605158103510.34%59106714.830111443011265110.00%000000.6000000015
13Gustav LindstromMonsters (CBJ)D5922931-634075716728502.99%83102117.3111011371330002116000.00%000000.6100000002
14Pierre-Olivier JosephMonsters (CBJ)D556243012500123768437647.14%64122422.26044391390111105010.00%000000.4900000202
15Turner ElsonMonsters (CBJ)LW731415294160756214932889.40%1397613.37000240000152248.44%6400000.5900000212
16Nathan LegareMonsters (CBJ)RW561351814255441460184621.67%44978.8900000000000241.18%3400100.7200001123
17Xavier SimoneauMonsters (CBJ)C7351015-110050627215456.94%104656.38000100000131053.33%24000000.6411000011
18William LagessonMonsters (CBJ)D70113141316040342810143.57%425988.55000541000044000.00%000000.4700000000
19John Parker-JonesMonsters (CBJ)D3401151803565340.00%91544.5500013000013000.00%000000.1300000000
20Patrick GuayMonsters (CBJ)C13000-200110010.00%0151.2000000000000043.75%1600000.0000000000
21Xavier ParentMonsters (CBJ)C/LW9000000200000.00%1121.3500000000000050.00%200000.0000000000
Team Total or Average12822544647181376034517481812260873218319.74%7122083416.25427912154419926915381658412354.53%661100220.69619117353740
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Anthony StolarzMonsters (CBJ)73422630.9073.1141650321623280120.83318730642
2Charlie LindgrenMonsters (CBJ)82000.9372.202460091420000.0000073000
Team Total or Average81442630.9093.0644110322524700120.833187373642


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary AverageSalary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Alex SteevesMonsters (CBJ)C2412/10/1999Yes196 Lbs6 ft0NoNoNo2Pro & Farm950,000$950,000$0$0$No950,000$Link / NHL Link
Anthony Stolarz (1 Way Contract)Monsters (CBJ)G291/20/1994No243 Lbs6 ft6NoNoYes3Pro & Farm2,638,000$2,638,000$2,638,000$0$No2,638,000$2,638,000$Link / NHL Link
Brayden PachalMonsters (CBJ)D248/23/1999Yes203 Lbs6 ft2NoNoNo3Pro & Farm995,000$995,000$0$0$No995,000$995,000$Link / NHL Link
Brendan BrissonMonsters (CBJ)C/LW/RW2210/22/2001Yes179 Lbs5 ft11NoNoNo3Pro & Farm950,000$550,000$0$0$No950,000$950,000$Link / NHL Link
Brendan Lemieux (1 Way Contract)Monsters (CBJ)LW/RW273/15/1996No215 Lbs6 ft1NoNoNo1Pro & Farm1,688,000$1,688,000$1,688,000$0$NoLink / NHL Link
Charlie LindgrenMonsters (CBJ)G3012/18/1993No179 Lbs6 ft2NoNoYes1Pro & Farm875,000$875,000$0$0$NoLink / NHL Link
Graeme ClarkeMonsters (CBJ)RW224/24/2001Yes175 Lbs5 ft11NoNoNo3Pro & Farm950,000$950,000$0$0$No950,000$950,000$NHL Link
Gustav LindstromMonsters (CBJ)D2510/20/1998No186 Lbs6 ft2NoNoNo3Pro & Farm998,900$998,900$0$0$No998,900$998,900$Link / NHL Link
Jacob Larsson (1 Way Contract)Monsters (CBJ)D264/29/1997No193 Lbs6 ft2NoNoNo2Pro & Farm1,200,000$1,200,000$1,200,000$0$No1,200,000$Link / NHL Link
John Parker-JonesMonsters (CBJ)D234/7/2000No230 Lbs6 ft7NoNoNo3Pro & Farm875,000$875,000$0$0$No875,000$875,000$Link / NHL Link
Jordan SpenceMonsters (CBJ)D222/24/2001Yes180 Lbs5 ft10NoNoNo2Pro & Farm950,000$950,000$0$0$No950,000$Link / NHL Link
Justin BarronMonsters (CBJ)D2211/15/2001Yes201 Lbs6 ft2NoNoNo2Pro & Farm950,000$950,000$0$0$No950,000$Link / NHL Link
Liam FoudyMonsters (CBJ)C/RW232/4/2000Yes188 Lbs6 ft2NoNoNo1Pro & Farm925,000$925,000$0$0$NoLink / NHL Link
Logan BrownMonsters (CBJ)C253/5/1998No218 Lbs6 ft6NoNoNo1Pro & Farm995,000$995,000$0$0$NoLink / NHL Link
Nathan LegareMonsters (CBJ)RW221/11/2001Yes205 Lbs6 ft0NoNoNo2Pro & Farm950,000$950,000$0$0$No950,000$Link / NHL Link
Patrick GuayMonsters (CBJ)C214/29/2002Yes181 Lbs5 ft9NoNoNo3Pro & Farm950,000$550,000$0$0$No950,000$950,000$NHL Link
Pierre-Olivier JosephMonsters (CBJ)D247/1/1999No185 Lbs6 ft2NoNoNo3Pro & Farm995,000$995,000$0$0$No995,000$995,000$Link / NHL Link
Rasmus Asplund (1 Way Contract)Monsters (CBJ)C/LW/RW2612/3/1997No185 Lbs5 ft11NoNoNo1Pro & Farm1,650,000$1,650,000$1,650,000$0$NoLink / NHL Link
Remi PoirierMonsters (CBJ)G2210/6/2001Yes210 Lbs6 ft2NoNoNo3Pro & Farm950,000$550,000$0$0$No950,000$950,000$NHL Link
Turner ElsonMonsters (CBJ)LW319/13/1992No191 Lbs6 ft0NoNoNo1Pro & Farm925,000$925,000$0$0$NoLink / NHL Link
Wayne Simmonds (1 Way Contract)Monsters (CBJ)LW/RW358/26/1988No184 Lbs6 ft2NoNoNo2Pro & Farm4,000,000$4,000,000$4,000,000$0$No4,000,000$Link / NHL Link
William LagessonMonsters (CBJ)D272/22/1996Yes207 Lbs6 ft2NoNoNo1Pro & Farm750,000$750,000$0$0$NoLink / NHL Link
Xavier ParentMonsters (CBJ)C/LW223/23/2001Yes170 Lbs5 ft8NoNoNo3Pro & Farm950,000$550,000$0$0$No950,000$950,000$NHL Link
Xavier SimoneauMonsters (CBJ)C225/19/2001Yes183 Lbs5 ft6NoNoNo3Pro & Farm950,000$550,000$0$0$No950,000$950,000$NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2424.83195 Lbs6 ft12.171,208,746$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Brendan LemieuxLiam FoudyRasmus Asplund40122
2Wayne SimmondsAlex SteevesGraeme Clarke30122
3Turner ElsonXavier Simoneau20122
4Xavier ParentXavier SimoneauLiam Foudy10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Pierre-Olivier JosephJustin Barron40122
2Gustav LindstromJordan Spence30122
3Brayden Pachal20122
4William LagessonPierre-Olivier Joseph10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Brendan LemieuxLiam FoudyRasmus Asplund60122
2Wayne SimmondsAlex SteevesGraeme Clarke40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Pierre-Olivier JosephJustin Barron60122
2Gustav LindstromJordan Spence40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Liam FoudyBrendan Lemieux60122
2Rasmus AsplundWayne Simmonds40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Pierre-Olivier JosephJustin Barron60122
2Gustav LindstromJordan Spence40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Liam Foudy60122Pierre-Olivier JosephJustin Barron60122
2Brendan Lemieux40122Gustav LindstromJordan Spence40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Liam FoudyBrendan Lemieux60122
2Rasmus AsplundWayne Simmonds40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Pierre-Olivier JosephJustin Barron60122
2Gustav LindstromJordan Spence40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Brendan LemieuxLiam FoudyRasmus AsplundPierre-Olivier JosephJustin Barron
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Brendan LemieuxLiam FoudyRasmus AsplundPierre-Olivier JosephJustin Barron
Extra Forwards
Normal PowerPlayPenalty Kill
Patrick Guay, Turner Elson, Patrick Guay, Turner Elson
Extra Defensemen
Normal PowerPlayPenalty Kill
, Brayden Pachal, William LagessonBrayden Pachal, William Lagesson
Penalty Shots
Liam Foudy, Brendan Lemieux, Rasmus Asplund, Wayne Simmonds, Alex Steeves
Goalie
#1 : Anthony Stolarz, #2 : Charlie Lindgren
Custom OT Lines Forwards
Liam Foudy, Brendan Lemieux, Rasmus Asplund, Wayne Simmonds, Alex Steeves, Graeme Clarke, Graeme Clarke, Turner Elson, , Xavier Simoneau, Patrick Guay
Custom OT Lines Defensemen
Pierre-Olivier Joseph, Justin Barron, Gustav Lindstrom, Jordan Spence,


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals22000000624110000003121100000031241.000611170096908910528591005104550652217374125.00%60100.00%11578298152.94%1611314851.18%728137253.06%2025143419105801022516
2Americans3120000069-31010000025-32110000044020.33368140096908910858591005104550112432584300.00%9277.78%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
3Barracuda20001100880100010005411000010034-130.750812200096908910848591005104550592412464125.00%50100.00%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
4Bears312000001215-31100000085320200000410-620.33312193100969089108085910051045501123822607228.57%10370.00%21578298152.94%1611314851.18%728137253.06%2025143419105801022516
5Bruins3210000056-1220000003121010000025-340.6675101501969089101018591005104550783029551516.67%7271.43%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
6Checkers3300000016791100000052322000000115661.000162743009690891013685910051045501072322827457.14%10280.00%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
7Comets211000005501010000025-31100000030320.50051015019690891068859100510455088212754300.00%9188.89%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
8Condors210010001073100010004311100000064241.0001019290096908910898591005104550861914506233.33%70100.00%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
9Crunch31200000710-32020000037-41100000043120.333713200096908910938591005104550833816738225.00%8275.00%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
10Devils44000000291316220000001551022000000148681.0002954830096908910264859100510455011329288722627.27%14285.71%11578298152.94%1611314851.18%728137253.06%2025143419105801022516
11Eagles210001007521000010023-11100000052330.7507142100969089107285910051045506514165610330.00%8450.00%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
12Firebirds22000000963110000007521100000021141.000916250096908910788591005104550872523515240.00%9188.89%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
13Griffins30300000416-121010000028-62020000028-600.000471110969089109285910051045501384348748112.50%14192.86%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
14Gulls21100000710-31010000048-41100000032120.50071320009690891061859100510455097272454400.00%12283.33%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
15IceHogs2110000034-11010000024-21100000010120.5003691196908910938591005104550491912361119.09%50100.00%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
16Marlies31200000710-32110000035-21010000045-120.33371421009690891010985910051045501033018908112.50%9277.78%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
17Moose211000007611010000023-11100000053220.500713200096908910578591005104550632016536116.67%8187.50%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
18Penguins4210001013112211000006602100001075260.7501321340096908910110859100510455015138419816212.50%17288.24%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
19Phantoms413000001424-1020200000415-1121100000109120.25014253900969089101498591005104550190643011015426.67%13284.62%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
20Reign2020000048-41010000025-31010000023-100.0004711009690891064859100510455066141444700.00%7185.71%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
21Roadrunners22000000954110000005321100000042241.000918270096908910668591005104550511212354125.00%5260.00%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
22Rocket31200000512-71010000012-121100000410-620.333510150096908910102859100510455012328127310110.00%4175.00%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
23Senators3110100011101211000007701000100043140.66711213200969089109985910051045509828417314321.43%16475.00%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
24Silver Knights20200000610-41010000035-21010000035-200.000612180096908910688591005104550621612438112.50%6433.33%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
25Sound Tigers3210000015114211000009721100000064240.6671528431096908910978591005104550112281475600.00%7185.71%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
26Stars20200000312-91010000027-51010000015-400.0003690096908910478591005104550993019535120.00%7528.57%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
27Thunderbirds220000001293110000006421100000065141.000122234009690891078859100510455084312951300.00%6183.33%11578298152.94%1611314851.18%728137253.06%2025143419105801022516
28Wild20100001712-51000000134-11010000048-410.250714210096908910808591005104550962514487114.29%60100.00%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
29Wolf Pack412010001418-420200000512-72100100096340.5001426400096908910124859100510455016146281141715.88%13284.62%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
30Wolves411000201495210000109362010001056-160.75014233700969089101488591005104550128362810819210.53%14192.86%11578298152.94%1611314851.18%728137253.06%2025143419105801022516
31Wranglers210001007611000010045-11100000031230.750713200096908910948591005104550943114416233.33%7271.43%01578298152.94%1611314851.18%728137253.06%2025143419105801022516
Total82373404331282296-1441152002211138159-21412214021201441377920.561282512794339690891029408591005104550302089267720082684717.54%2785380.94%61578298152.94%1611314851.18%728137253.06%2025143419105801022516
_Since Last GM Reset82373404331282296-1441152002211138159-21412214021201441377920.561282512794339690891029408591005104550302089267720082684717.54%2785380.94%61578298152.94%1611314851.18%728137253.06%2025143419105801022516
_Vs Conference34121402321103120-171756022115260-81778001105160-9360.52910318929222969089101219859100510455012323742947951191815.13%1132280.53%31578298152.94%1611314851.18%728137253.06%2025143419105801022516
_Vs Division1677000215455-1833000112529-48440001029263190.594541041581196908910545859100510455057217313536950918.00%511374.51%21578298152.94%1611314851.18%728137253.06%2025143419105801022516

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8292W428251279429403020892677200833
All Games
GPWLOTWOTL SOWSOLGFGA
8237344331282296
Home Games
GPWLOTWOTL SOWSOLGFGA
4115202211138159
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4122142120144137
Last 10 Games
WLOTWOTL SOWSOL
630100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2684717.54%2785380.94%6
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
859100510455096908910
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1578298152.94%1611314851.18%728137253.06%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2025143419105801022516


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
3 - 2023-10-1211Phantoms12Monsters2BLBoxScore
5 - 2023-10-1422Wolf Pack9Monsters3BLBoxScore
7 - 2023-10-1635Griffins8Monsters2BLBoxScore
11 - 2023-10-2063Wranglers5Monsters4BLXBoxScore
12 - 2023-10-2173Monsters4Wild8ALBoxScore
15 - 2023-10-2484Gulls8Monsters4BLBoxScore
17 - 2023-10-26103Monsters0Rocket7ALBoxScore
19 - 2023-10-28121Sound Tigers6Monsters4BLBoxScore
21 - 2023-10-30136Monsters1Stars5ALBoxScore
24 - 2023-11-02146Crunch4Monsters3BLBoxScore
26 - 2023-11-04166Monsters3Bears5ALBoxScore
28 - 2023-11-06176Monsters7Checkers3AWBoxScore
31 - 2023-11-09194Stars7Monsters2BLBoxScore
33 - 2023-11-11210Monsters2Griffins4ALBoxScore
34 - 2023-11-12225Monsters4Wolf Pack2AWBoxScore
36 - 2023-11-14230Penguins3Monsters4BWBoxScore
38 - 2023-11-16243Roadrunners3Monsters5BWBoxScore
40 - 2023-11-18263Monsters1Bears5ALBoxScore
41 - 2023-11-19268Monsters3Phantoms5ALBoxScore
44 - 2023-11-22280IceHogs4Monsters2BLBoxScore
46 - 2023-11-24297Monsters6Devils4AWBoxScore
48 - 2023-11-26318Monsters4Wolves3AWXXBoxScore
49 - 2023-11-27321Bruins0Monsters1BWBoxScore
51 - 2023-11-29337Rocket2Monsters1BLBoxScore
53 - 2023-12-01354Senators4Monsters3BLBoxScore
55 - 2023-12-03371Monsters2Bruins5ALBoxScore
57 - 2023-12-05381Reign5Monsters2BLBoxScore
59 - 2023-12-07397Monsters6Sound Tigers4AWBoxScore
60 - 2023-12-08405Thunderbirds4Monsters6BWBoxScore
62 - 2023-12-10420Checkers2Monsters5BWBoxScore
66 - 2023-12-14449Monsters4Marlies5ALBoxScore
68 - 2023-12-16464Devils2Monsters7BWBoxScore
71 - 2023-12-19485Monsters1Americans3ALBoxScore
73 - 2023-12-21499Bears5Monsters8BWBoxScore
75 - 2023-12-23518Marlies1Monsters2BWBoxScore
79 - 2023-12-27528Monsters8Devils4AWBoxScore
81 - 2023-12-29546Marlies4Monsters1BLBoxScore
82 - 2023-12-30556Monsters3Americans1AWBoxScore
85 - 2024-01-02574Bruins1Monsters2BWBoxScore
87 - 2024-01-04592Monsters7Phantoms4AWBoxScore
89 - 2024-01-06610Wild4Monsters3BLXXBoxScore
92 - 2024-01-09631Monsters5Moose3AWBoxScore
96 - 2024-01-13659Firebirds5Monsters7BWBoxScore
98 - 2024-01-15673Comets5Monsters2BLBoxScore
102 - 2024-01-19703Devils3Monsters8BWBoxScore
106 - 2024-01-23736Monsters6Condors4AWBoxScore
108 - 2024-01-25753Monsters3Wranglers1AWBoxScore
110 - 2024-01-27771Monsters3Comets0AWBoxScore
111 - 2024-01-28774Monsters2Firebirds1AWBoxScore
113 - 2024-01-30776Monsters6Thunderbirds5AWBoxScore
124 - 2024-02-10812Crunch3Monsters0BLBoxScore
127 - 2024-02-13826Monsters4Senators3AWXBoxScore
131 - 2024-02-17861Monsters3Barracuda4ALXBoxScore
134 - 2024-02-20883Monsters2Reign3ALBoxScore
135 - 2024-02-21886Monsters3Gulls2AWBoxScore
137 - 2024-02-23900Americans5Monsters2BLBoxScore
139 - 2024-02-25921Wolf Pack3Monsters2BLBoxScore
142 - 2024-02-28939Monsters5Wolf Pack4AWXBoxScore
143 - 2024-02-29942Wolves2Monsters3BWXXBoxScore
145 - 2024-03-02965Monsters1IceHogs0AWBoxScore
147 - 2024-03-04975Silver Knights5Monsters3BLBoxScore
148 - 2024-03-05983Monsters2Penguins1AWBoxScore
150 - 2024-03-07995Condors3Monsters4BWXBoxScore
152 - 2024-03-091010Admirals1Monsters3BWBoxScore
155 - 2024-03-121033Monsters4Rocket3AWBoxScore
157 - 2024-03-141047Senators3Monsters4BWBoxScore
159 - 2024-03-161066Barracuda4Monsters5BWXBoxScore
160 - 2024-03-171076Moose3Monsters2BLBoxScore
162 - 2024-03-191083Monsters0Griffins4ALBoxScore
165 - 2024-03-221111Monsters5Eagles2AWBoxScore
166 - 2024-03-231123Monsters3Silver Knights5ALBoxScore
169 - 2024-03-261145Monsters4Roadrunners2AWBoxScore
171 - 2024-03-281154Monsters5Penguins4AWXXBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
173 - 2024-03-301172Penguins3Monsters2BLBoxScore
175 - 2024-04-011181Eagles3Monsters2BLXBoxScore
178 - 2024-04-041203Sound Tigers1Monsters5BWBoxScore
180 - 2024-04-061222Phantoms3Monsters2BLBoxScore
181 - 2024-04-071230Monsters1Wolves3ALBoxScore
183 - 2024-04-091245Monsters4Crunch3AWBoxScore
185 - 2024-04-111256Monsters4Checkers2AWBoxScore
187 - 2024-04-131278Monsters3Admirals1AWBoxScore
190 - 2024-04-161296Wolves1Monsters6BWBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price2515
Attendance80,98240,476
Attendance PCT98.76%98.72%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2962 - 98.75% 80,234$3,289,614$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,636,743$ 1,783,390$ 1,583,390$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
9,288$ 1,729,673$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 13,976$ 0$




Monsters Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Liam Foudy153748816233208850169110.71%61323321.132017371151231113356.84%01.0037
2Logan Brown1464996145371103615055458.99%53344223.5882331760331410256.36%20.8418
3Rasmus Asplund12566771432783433156911.60%40275122.011518331072351412354.64%31.0419
4Pierre-Olivier Joseph15423110133281013532242688.58%204357323.20826341261234020.00%00.7400
5Alex Steeves1405068118173114138242111.88%30229016.36310133300048154.08%21.0302

Monsters Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Ilya Samsonov83552530.9152.8949658223928020210.75929
2Anthony Stolarz73422630.9073.1141650321623280120.83318
3Charlie Lindgren54291310.9033.2327282114715210210.85714
4Kevin Poulin33121140.8863.961635201089510400.0000
5Sean Bonar57104040.8955.5929084027125700120.7508

Monsters Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
2382224904223281386-10541132202202148189-414192702021133197-6461281514795201121006383135104410341024543890108049721492335021.46%2215475.57%31181295739.94%1390363138.28%572147138.89%1666114522885951002462
20228239280563134230933412410034001761354141151802231166174-81013426229641113010797930199731005100454283885150519462587127.52%2085374.52%21687304355.44%1492281852.95%727143150.80%2147155117995581015525
202382373404331282296-1441152002211138159-2141221402120144137792282512794339690891029408591005104550302089267720082684717.54%2785380.94%61578298152.94%1611314851.18%728137253.06%2025143419105801022516
Total Regular Season246981110131185905991-86123525207813462483-21123465906372443508-652549051648255364338297249279094287630443073158974828231679610375916822.13%70716077.37%114446898149.50%4493959746.82%2027427447.43%583941315998173330401505
Playoff
2022624000001820-231200000910-131200000910-1418304810963022471585144200696015723313.04%30680.00%011624447.54%11323448.29%6510959.63%183128165529145
Total Playoff624000001820-231200000910-131200000910-1418304810963022471585144200696015723313.04%30680.00%011624447.54%11323448.29%6510959.63%183128165529145

Monsters Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Liam Foudy6606202243517.14%314824.68101500011158.17%00.8100
2Rasmus Asplund4246121151513.33%211228.07022100000027.27%01.0700
3Philip Tomasino62240038287.14%014123.63101200010054.55%00.5600
4Juuso Valimaki604418131460.00%1016026.7701110000000.00%00.5000
5Maxim Letunov6224-14671612.50%110217.06000000000053.85%00.7800

Monsters Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Charlie Lindgren42110.9022.5730420131320000.0000
2Kevin Poulin20100.9042.80107005520010.0000